Leichtwasserreaktoren haben in den letzten zwanzig Jahren täglich mehr Energie produziert, als Saudi Arabien Öl fördert. Sie sind die Arbeitspferde der Energieversorger. Kein anders Reaktorkonzept konnte bisher dagegen antreten.
Sieger der ersten Runde des Förderungsprogramm des Department of Energy (DoE) war Babcock & Wilcox (B&W) mit seinem mPower Konzept, zusammen mit Bechtel und Tennessee Valley Authority. Sicherlich kein Zufall, sind doch (fast) alle kommerziellen Reaktoren Leichtwasserreaktoren und B&W ist der Hoflieferant der US-Navy – hat also jahrzehntelange Erfahrung im Bau kleiner Druckwasserreaktoren.
Die Gruppe der kleinen Druckwasserreaktoren
Bei konventionellen Druckwasserreaktoren sind um das „nukleare Herz“, dem Reaktordruckgefäß, die Dampferzeuger (2 bis 4 Stück), der Druckhalter und die Hauptkühlmittelpumpen in einer Ebene gruppiert. Diese Baugruppen sind alle mit dem eigentlichen Reaktor durch dicke und kompliziert geformte Rohrleitungen verbunden. Eine solche Konstruktion erfordert langwierige und kostspielige Montagearbeiten unter den erschwerten Bedingungen einer Baustelle. Die vielen Rohrleitungen bleiben für die gesamte Lebensdauer des Kraftwerks „Schwachstellen“, die regelmäßig gewartet und geprüft werden müssen. Der gesamte Raum muß in einem Containment (Stahlbehälter aus zentimeterdicken Platten) und einer Stahlbetonhülle (meterdick, z. B. gegen Flugzeugabstürze) eingeschlossen werden.
Bei einem Small Modular Reaktor (SMR) stapelt man alle erforderlichen Komponenten vertikal übereinander und packt sie alle zusammen in einen Druckbehälter. Dadurch entfallen die vielen Rohrleitungen und Ventile zu ihrer Verbindung. Was es gar nicht gibt, kann auch nicht kaputt gehen. Der „größte – im Sinne eines Auslegungskriteriums – anzunehmende Unfall“ (GAU, oft zitiert und kaum verstanden), der Verlust des Kühlmittels, wird weniger wahrscheinlich und läßt sich einfacher bekämpfen. Allerdings sind bei dieser „integrierten Bauweise“ die Größen der einzelnen Komponenten begrenzt, will man noch eine transportierbare Gesamteinheit haben. Will man ein Kraftwerk mit heute üblicher Leistung bauen, muß man daher mehrere solcher Einheiten „modular“ an einem Standort errichten.
Geht man von diesem Konstruktionsprinzip aus, erhält man ein röhrenförmiges (kleiner Durchmesser, große Länge) Gebilde. Die Länge – als Bauhöhe umgesetzt – läßt sich hervorragend für passive Sicherheitskonzepte nutzen. Die schlanke Bauweise erlaubt es, den kompletten Reaktor in eine Grube zu versenken: Durch die unterirdische Bauweise hat man einen hervorragenden Schutz gegen alle Einwirkungen von außen (EVA) gewonnen.
Das Grundprinzip der Anordnung übereinander, eint diese Gruppe. Gleichwohl, sind im Detail eine Menge Variationen möglich und vielleicht sogar nötig. So meldete allein nuSkale diesen Monat voller Stolz, daß sie über 100 verschiedene Patente in 17 Ländern für ihren Reaktor angemeldet haben. Inzwischen dürften die SMR-Patente in die Tausende gehen. Nach einer sterbenden Industrie sieht das jedenfalls nicht aus.
Das mPower Konzept
Das „Nuclear Steam Supply System“ (NSSS) von Babcock & Wilcox (B&W) ist besonders schlank geraten: Es hat eine Höhe von über 25 m bei einem Durchmesser von 4 m und wiegt 570 (ohne Brennstoff) bzw. 650 to (mit Brennstoff). Damit soll es in den USA noch auf dem Schienenweg transportierbar sein. Seine Wärmeleistung beträgt 530 MWth und seine elektrische Leistung 155 MWel (mit Luftkondensator) oder 180 MWel bei Wasserkühlung. Ein komplettes Kraftwerk mit zwei Blöcken und allen erforderlichen Hilfs- und Nebenanlagen (300 – 360 MWel) soll einen Flächenbedarf von etwa 16 ha haben. Damit ist die Hauptstoßrichtung klar: Der Ersatz bestehender, alter Kohlekraftwerke.
Das Core besteht aus 69 Brennelementen mit 2413 mm aktiver Länge in klassischer 17 x 17 Anordnung bei einer Anreicherung von weniger als 5 % U235.. Hierbei zielt man auf die kostengünstige Weiterverwendung handelsüblicher Brennelemente für Druckwasserreaktoren ab. Bei diesem kleinen Reaktor kann man damit Laufzeiten von rund 4 Jahren zwischen den Nachladungen erreichen. Durch die Doppelblockbauweise ergibt sich somit eine extrem hohe Arbeitsausnutzung von (erwartet) über 95%. Das integrierte Brennelementelagerbecken kann Brennelemente aus 20 Betriebsjahren aufnehmen.
Die Turmbauweise erlaubt vollständig passive Sicherheitseinrichtungen, wodurch ein Unglück wie in Fukushima (völliger Stromausfall) von vornherein ausgeschlossen ist. Die Brennelemente sitzen ganz unten im Druckbehälter. Darüber kommt die gesamte Steuereinheit (Regelstäbe und ihre Antriebe) und darüber die Dampferzeuger. Ganz oben sitzen die acht Umwälzpumpen und der Druckhalter. Bei einem Stromausfall würden die Regelstäbe sofort und vollautomatisch durch die Schwerkraft in den Reaktorkern fallen und diesen abschalten. Die – im ersten Moment noch sehr hohe – Nachzerfallswärme erwärmt das Kühlwasser weiter und treibt durch den entstehenden Dichteunterschied das Kühlwasser durch den inneren Kamin nach oben. In den höher gelegenen Dampferzeugern kühlt es sich ab und sinkt im Außenraum des Reaktorbehälters wieder nach unten: Ein Naturumlauf entsteht, der für die sichere und automatische Abfuhr der Restwärme sorgt.
Als „Notstrom“ werden nur entsprechende Batterien für die Instrumentierung und Beleuchtung etc. vorgehalten. Große Notstromaggregate mit Schalt- und Hilfsanlagen werden nicht benötigt. Auch hier gilt wieder: Was es gar nicht gibt, kann im Ernstfall auch nicht versagen!
Westinghouse SMR (NextStart Alliance)
Westinghouse hat den ersten Druckwasserreaktor überhaupt entwickelt (Nautilus Atom-U-Boot 1954), das erste kommerzielle Kernkraftwerk (Shippingport 1957) gebaut und ist bei fast allen (westlichen) Druckwasserreaktoren Lizenzgeber. Es ist also nicht überraschend, wenn der Marktführer auch in diesem Segment dabei ist. Die NextStart SMR Alliance ist ein Zusammenschluss mehrerer Energieversorger und Gemeinden, die bis zu fünf Reaktoren im Ameren Missouri’s Callaway Energy Center errichten will.
Der Westinghouse SMR soll eine Leistung von 800 MWth und mindestens 225 MWel haben. Er unterscheidet sich von seinem Konstruktionsprinzip nicht wesentlich vom vorher beschriebenen B&W „Kleinreaktor“. Seine Zykluszeit soll 24 Monate betragen (bei Verwendung der Brennelemente des AP1000). Seine Lastfolgegeschwindigkeit im Bereich von 20 bis 100% Auslegungsleistung beträgt 5% pro Minute. Der Reaktor kann selbstregelnd Lastsprünge von 10 % mit einer Rate von 2% pro Minute dauerhaft ausregeln. Das alte Propagandamärchen der „Atomkraftgegner“ von den „unflexiblen AKW’s“ trifft auch bei diesen Reaktortypen nicht zu. Im Gegenteil dreht Westinghouse den Spieß werbewirksam um und offeriert diesen Reaktor als (immer notwendiges) Backup für Windkraft- und Solaranlagen zur CO2 – freien Stromversorgung.
Westinghouse integriert in das Containment noch einen zusätzlichen Wasservorrat und bekämpft auch noch passiv einen völligen Verlust des Kühlwasserkreislaufes. Damit dieser Störfall eintreten kann, müßte das Druckgefäß des SMR zerstört worden sein. In diesem Fall könnte das Wasser auslaufen und würde sich im Sumpf des Containment sammeln. Damit jeder Zeit der Kern des Reaktors mit Wasser bedeckt bleibt (und nicht wie in Fukushima und Harrisburg teilweise und zeitweise trocken fallen kann), wird automatisch Wasser aus den Speichern im Containment zusätzlich hinzugefügt. Alle Systeme sind so bemessen, daß sich der Reaktor auch nach einem schweren Unglück selbst in einen sicheren Zustand versetzt und mindestens für die folgenden 7 Tage keines menschlichen Eingriffs bedarf.
Wenn nur der Strom total ausfällt, aber das Reaktordruckgefäß nicht geplatzt ist, funktioniert die passive Notkühlung in drei gestaffelten Ebenen. Solange der normale Kühlkreislauf (Kühlturm oder Kühlwasser) noch Wasser enthält, wird über diesen durch Verdunstung die Nachzerfallswärme abgeführt. Versagt dieser sekundäre Kreislauf des Kraftwerks, tritt die innere Notkühlung in Kraft. Das kalte und borierte Wasser in den Nottanks strömt in den Reaktor. Gleichzeitig kann das heiße Wasser den Reaktor verlassen und in die Notkühlbehälter zurückströmen – es entsteht ein Naturumlauf. Damit das Wasser in den Notkühlbehältern auch weiterhin „kalt“ bleibt, besitzt jeder dieser Behälter im oberen Teil einen Wärmeübertrager. Diese Wärmeübertrager sind außerhalb des Containment mit „offenen Schwimmbecken“ verbunden, die durch Verdunstung die Energie an die Umwelt abgeben können. Bricht auch dieser Kühlkreislauf in sich zusammen, kann die Wärme immer noch durch Verdampfung des Wassers im Sumpf des Containment und durch anschließende Kondensation an der Oberfläche des Containment abgeführt werden.
Ausdrücklich wird der Markt für diesen Reaktortyp auch in der Fernwärmeversorgung und zur Meerwasserentsalzung gesehen. Peking hat z. B. viele Kohleheizwerke, die stark zur unerträglichen Luftverschmutzung beitragen. Es ist also kein Zufall, daß bereits Kooperationsverhandlungen laufen.
NuScale
Diese Variante ist aus einem durch das U.S. Department of Energy (USDOE) geförderten Forschungsprojekt am Idaho National Environment & Engineering Laboratory (INEEL) und der Oregon State University (OSU) hervorgegangen. Im Jahre 2008 hat dieses „Startup“ einen Genehmigungsantrag bei der US Nuclear Regulatory Commission (USNRC) für einen 45 MWel. Reaktor gestellt. Im Jahr 2011 ist das Unternehmen praktisch vollständig von FLUOR übernommen worden. Es besteht zudem eine sehr enge Verbindung mit Rolls-Royce.
Das NuScale Modul hat nur eine thermische Leistung von 160 MWth und eine elektrische Leistung von mindestens 45 MWel.. Bei einem Durchmesser von 4,5 m, einer Höhe von 24 m und einem Gewicht von 650 to ist es aber fast genau so groß, wie die beiden schon vorgestellten SMR. Die geringe Energiedichte führt zu einer starken Vereinfachung. Das Unternehmen gibt die spezifischen Investitionskosten mit weniger als 5.000 $/kW an.
Bei dem Konzept handelt es sich um einen Zwitter aus Siedewasser- und Druckwasserreaktor. So etwas ähnliches gab es auch schon in Deutschland, unter der Bezeichnung FDR, als Antrieb der Otto Hahn. Dieses Konzept hat sich schon damals als sehr robust und gutmütig erwiesen. Der NuSkale SMR kommt völlig ohne Umwälzpumpen aus. Man nimmt im Reaktorkern einen etwas höheren (als bei einem reinen Druckwasserreaktor üblichen) Dampfanteil in Kauf, bekommt dafür aber einen großen Dichteunterschied (bezogen auf das „kalte“ Eintrittswasser), der hervorragend einen Naturumlauf anregt. Allerdings erzeugt man keinen Dampf, den man direkt auf die Turbine gibt (wie bei einem Siedewasserreaktor), sondern „beheizt“ damit nur die zwei in dem Reaktordruckgefäß integrierten Dampferzeuger. Man hat also wie bei einem konventionellen Druckwasserreaktor einen physikalisch voneinander getrennten Primär- (durch den Reaktorkern) und Sekundärkreislauf (über die Turbine).
Das NuScale-Konzept bricht radikal mit einigen Gewohnheiten:
- Man geht von bis zu zwölf Reaktoren aus, die zu einem Kraftwerk mit dann mindestens 540 MWel. zusammengefaßt werden Sie sollen in zwei Reihen zu sechs Reaktoren in einem „unterirdischen Schwimmbecken“ angeordnet werden. Bei einem Ladezyklus von 24 Monaten, könnte somit alle zwei Monate ein Brennelementewechsel erfolgen. Bei einem zusätzlichen „Reservemodul“ könnte das Kraftwerk nahezu mit 100 % Arbeitsausnutzung durchlaufen. Die „Auszeit“ eines konventionellen Kernkraftwerk entfällt. Ebenso wird die Personalspitze(üblicherweise mehr als 1000 Leute beim Brennelementewechsel) vermieden. Der Brennelementewechsel mit seinen Wiederholungsprüfungen wird zu einem stetigen „Wartungsprozess“ umgestaltet. Dies kann zu beträchtlichen Kosteneinsparungen führen.
- Durch den Verzicht von Umwälzpumpen wird die Konstruktion noch einmal stark vereinfacht.
- Durch die Aufstellung in einem „großen Schwimmbecken“ sind die Reaktoren vor Erdbeben und Druckwellen praktisch vollkommen geschützt. Überflutungen (Fukushima) sind kein Sicherheitsrisiko mehr, da ja die Reaktoren ohnehin ständig im Wasser stehen.
- Die Reaktoren verzichten vollständig auf Wechselstrom (Fukushima) und benutzen lediglich passive Sicherheits- und Kühlsysteme. Elektrische Energie ist nur für die Instrumentierung und Beleuchtung notwendig. Relativ kleine Batterien sind hierfür ausreichend. Der Batterie- und Kontrollraum befindet sich im unterirdischen Teil des Kraftwerks.
- Selbst wenn es zu einer Beschädigung des Reaktorkerns kommen würde (Fukushima), würden radioaktive Stoffe im Schwimmbecken und Reaktorgebäude zurückgehalten werden. Außerdem beträgt das radioaktive Inventar in jedem Modul weniger als 5% eines konventionellen Reaktors. Somit ist auch die bei einem Unfall abzuführende Restwärme entsprechend klein.
- Im Containment herrscht Vakuum. Eine Bildung explosiver Gase (Fukushima) ist somit ausgeschlossen. Es wirkt wie eine Thermosflasche. Zusätzliche Isolierungen sind nicht erforderlich. Andererseits würde es bei einer Zerstörung des eigentlichen Druckbehälters, den entweichenden Dampf aufnehmen und eine „Wärmebrücke“ zum umgebenden Wasser herstellen.
Die überragende sicherheitstechnische Philosophie dieses Konzeptes ist, daß sich auch nach schwersten Zerstörungen (z. B. Tsunami in Fukushima) der Reaktor ohne menschliche Eingriffe selbsttätig in einen sicheren Zustand überführt und dort ohne jeden (nötigen) Eingriff ewig verbleibt! Dies mag noch einmal an der „Notkühlung“ verdeutlicht werden: Wenn die äußere Wärmesenke entfällt (Ausfall der Kühlwasserpumpen in Fukushima durch den Tsunami), alle Stromquellen ausfallen (Zerstörung der Schaltanlagen und Notstromaggregate durch die Flutwelle in Fukushima), dient das „Schwimmbecken“ zur Aufnahme der Nachzerfallswärme. Es ist so bemessen, daß sein Wasserinhalt durch Erwärmung und Verdunstung den Reaktorkern sicher kühlt. Selbst, wenn man kein Wasser nachfüllen würde, wäre es erst nach etwa einem Monat leer. Dann aber, ist die Nachzerfallswärme bereits so stark abgeklungen (< 400 kW pro Modul), daß die „Luftkühlung“ in dem nun leeren Wasserbecken, sicher ausreichen würde.
Das Brennelementelagerbecken ist zur Aufnahme von 15 Betriebsjahren ausgelegt. Es befindet sich ebenfalls im unterirdischen Teil und kann für mindestens 30 Tage ohne zusätzliches Wasser auskommen (Fukushima). Es besteht aus einem Edelstahlbecken in einer Stahlbetonwanne. Stahlbecken und Betonwanne sind seismisch von einander isoliert, sodaß auch schwerste Erdbeben praktisch wirkungslos für die gelagerten Brennelemente sind.
Die NuScale Konstruktion ist ein schönes Beispiel, wie man Jahrzehnte alte Entwürfe der Leichtwasserreaktoren noch einmal ganz neu durchdenken kann. Es ist der radikalste Ansatz unter den zur Genehmigung eingereichten Konzepten. Die Wahrscheinlichkeit für eine schwere Beschädigung des Reaktorkerns mit teilweiser Kernschmelze – wie in Harrisburg und Fukushima geschehen – verringert sich auf unter ein Ereignis in zehn Millionen Betriebsjahren. Selbst wenn es eintreten würde, wären die Auswirkungen auf die Umwelt noch geringer. Es wird bereits diskutiert, ob bei diesem Reaktortyp überhaupt noch eine „Sicherheitszone“ mit potentieller Evakuierung der Anwohner, erforderlich ist. Jedenfalls gibt es in USA bereits ein reges Interesse zahlreicher Gemeinden und Städte zur dezentralen, kostengünstigen, umweltschonenden und krisensicheren (Wirbelstürme, Tornados, etc.) Versorgung mit Strom und Fernwärme.
Holtec international
Einem klassischen Reaktor noch am ähnlichsten, ist das von Holtec im Jahre 2012 eingereichte Konzept des „Holtec Inherently-Safe Modular Reactor“ (HI-SMUR) mit einer geplanten Leistung von 145 MWel.. Er besteht aus den klassischen drei Baugruppen: Reaktor, Dampferzeuger und Druckhalter. Der Druckbehälter ist ein fast 32 m langes Gebilde, welches in einer brunnenförmigen Grube versenkt ist. Es ist mit den Dampferzeugern entweder durch ein „Rohrstück“ (senkrechte Variante) verbunden oder die waagerechten Dampferzeuger sind direkt angeschweißt. Liegende Dampferzeuger sind nur bei russischen Konstruktionen gebräuchlich. Werden stehende Dampferzeuger verwendet, baut dieser Typ oberirdisch noch einmal 28 m hoch.
Der Entwurf ist sehr eigenwillig. Man hat ursprünglich waagerechte Dampferzeuger mit separater Überhitzung vorgesehen. Angeblich kann man durch eine angestrebte Überhitzung auf handelsübliche Industrieturbinen zurückgreifen. Man verzichtet auf Umwälzpumpen, bei gleichzeitig großem Abstand vom Siedezustand. Man ist deshalb auf eine sehr große Temperaturspreizung (TE = 177 °C und TA = 302 °C bei p = 155 bar) angewiesen. Eine regenerative Speisewasservorwärmung ist praktisch ausgeschlossen. Das ganze ähnelt eher einer Dampflokomotive, als einem modernen Kraftwerk.
Das Brennstoffkonzept ist auch etwas ungewöhnlich. Es ist keine Borierung zur Kompensation der Überschußreaktivität vorgesehen. Das heißt, es muß alles über abbrennbare Gifte (Gd und Er) geschehen. Der gesamte Brennstoff soll sich in einer Kartusche aus nur 32 Brennelementen befinden. Bei einem so kleinen Core dürfte der Neutronenfluß nur sehr schwer in den Griff zu bekommen sein bzw. jeder Brennstab müßte eine individuelle Anreicherung erhalten. Man will die Kassette nach 100 h (Nachzerfallswärme) in einem Stück auswechseln. Ein Brennelementewechsel soll so weniger als eine Woche dauern. Gleichwohl, soll die Zykluszeit 42 Monate betragen. Wenn sich nicht einige revolutionäre Erfindungen dahinter verbergen, die bisher noch nicht öffentlich zugänglich sind, dürfte eher der Wunsch der Vater sein.
Bisher kooperiert Holtec mit Shaw und Areva. Ein Prototyp wäre auf der Savannah River Site des DoE’s geplant. Die Bauzeit wird mit nur 2 Jahren, bei Kosten von nur 675 Millionen US-Dollar angegeben. Man wird sehen.
Carem
Anfang Dezember 2013 wurde der Auftrag für das Reaktordruckgefäß des „Central Argentina de Elementos Modulares“ CAREM-Reaktor erteilt. Es handelt sich dabei um ein 200 to schweres, 11 m hohes Gefäß mit einem Durchmesser von 3,5 m. Es ist für den Prototyp eines argentinischen SMR mit einer Leistung von 25 MWel gedacht. Später soll dieser Reaktor eine Leistung von 100 bis 200 MWel. erreichen. Es handelt sich ebenfalls um eine voll integrierte Bauweise, mit ausschließlich passiven Sicherheitseinrichtungen.
Schwimmender SMR aus Russland
Der staatliche russische Hersteller Rosenergoatom baut in Petersburg eine Barge mit zwei Reaktoren, die nach Chukotka in Sibirien geschleppt werden soll, um dort Bergwerke mit Energie zu versorgen. Die Reaktoren sind eine zivile Abwandlung der KLT-40S Baureihe für Eisbrecher, mit einer Leistung von 35 MWel. Vorteil dieses „Kraftwerks“ ist, daß es auf einer seit Jahren erprobten Technik basiert. Die russische Eisbrecherflotte versieht zuverlässig ihren Dienst im nördlichen Eismeer. Ein nicht zu unterschätzender Vorteil bei der Versorgung entlegener Gegenden.
Sehr Interessant ist das Geschäftsmodell. Eine solche barge wird fix und fertig zum Einsatzort geschleppt. Der Kunde braucht nur für den Stromanschluss an Land zu sorgen. Weitere Investitionen oder Unterhaltskosten fallen für ihn nicht an. Nach drei Jahren wird die barge für einen Brennelementewechsel und notwendige Wiederholungsprüfungen abgeschleppt und durch eine andere barge ersetzt. Da bei einem Kernkraftwerk die Brennstoffkosten ohnehin eine untergeordnete Rolle spielen, kann der Kunde das Kraftwerk für eine pauschale Jahresgebühr mieten. Ob und wieviel Strom er verbraucht, braucht ihn nicht mehr zu kümmern. Eine feste Kalkulationsgrundlage, die für Öl- und Minengesellschaften höchst verlockend ist. Als einzige Hürde in westlichen Regionen erscheint lediglich (noch) das „Made in Russia“. Jedenfalls hat er keine Vorauszahlungen zu leisten, hat keinerlei Reparaturkosten und braucht sich nicht um die Entsorgung des „Atommülls“ zu kümmern. Russland kann seinen „Heimvorteil“ des geschlossenen Brennstoffkreislaufs voll ausspielen.
Parallel hat Russland noch ein größeres Modell mit 300 MWel auf der Basis des VBER-300 PWR Druckwasserreaktors in der Entwicklung.
Abschließender Hinweis
Dieser Artikel kann und soll nur einen Überblick über den Stand der internationalen Entwicklung geben. Wer bis hierhin nicht durch so viel Technik abgeschreckt worden ist, dem empfehle ich, einfach mal die Typen und Hersteller zu googeln. Besonders die Seiten der Hersteller verfügen über zahlreiche Zeichnungen und Animationen. Zwar ausnahmslos in Englisch, aber mit der Grundlage dieses Artikels lassen sie sich hoffentlich auch für nicht Techniker verstehen.